Abstract
The identification of individual parameters of detailed physiological models of type 1 diabetes can be carried out by clinical tests designed optimally through model-based design of experiments (MBDoE) techniques. So far, MBDoE for diabetes models has been considered for discrete glucose measurement systems only. However, recent advances on sensor technology allowed for the development of continuous glucose monitoring systems (CGMSs), where glucose measurements can be collected with a frequency that is practically equivalent to continuous sampling. To specifically address the features of CGMSs, in this paper the optimal clinical test design problem is formulated and solved through a continuous, rather than discrete, approach. A simulated case study is used to assess the impact of CGMSs both in the optimal clinical test design problem and in the subsequent parameter estimation for the identification of a complex physiological model of glucose homeostasis. The results suggest that, although the optimal design of a clinical test is simpler if continuous glucose measurements are made available through a CGMS, the noise level and formulation may make continuous measurements less suitable for model identification than their discrete counterparts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.