Abstract

The passage of a single ammonia molecule from an infinitely dilute gas through the water/vapor interface is studied by constrained molecular dynamics simulations. The free energy of the system as a function of the distance between the ammonia and the interface has a minimum in the interfacial region. It is found that the preference of the ammonia for the interface is mainly due the disruption of the solvent structure caused by the ammonia in the bulk region, which results in an increase of the solvent internal energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.