Abstract

We proved in [K. Abe, K. Fukui, On commutators of equivariant diffeomorphisms, Proc. Japan Acad. 54 (1978), 52-54] that the identity component \(\text{Diff}\,^r_{G,c}(M)_0\) of the group of equivariant \(C^r\)-diffeomorphisms of a principal \(G\) bundle \(M\) over a manifold \(B\) is perfect for a compact connected Lie group \(G\) and \(1 \leq r \leq \infty\) (\(r \neq \dim B + 1\)). In this paper, we study the uniform perfectness of the group of equivariant \(C^r\)-diffeomorphisms for a principal \(G\) bundle \(M\) over a manifold \(B\) by relating it to the uniform perfectness of the group of \(C^r\)-diffeomorphisms of \(B\) and show that under a certain condition, \(\text{Diff}\,^r_{G,c}(M)_0\) is uniformly perfect if \(B\) belongs to a certain wide class of manifolds. We characterize the uniform perfectness of the group of equivariant \(C^r\)-diffeomorphisms for principal \(G\) bundles over closed manifolds of dimension less than or equal to 3, and in particular we prove the uniform perfectness of the group for the 3-dimensional case and \(r\neq 4\).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.