Abstract

We analyze the compressible isentropic Navier–Stokes equations (Lions, 1998) in the two-dimensional case with . These equations also modelize the shallow water problem in height-flow rate formulation used to solve the flow in lakes and perfectly well-mixed sea. We establish a convergence result for the time-discretized problem when the momentum equation and the continuity equation are solved with the Galerkin method, without adding a penalization term in the continuity equation as it is made in Lions (1998). The second part is devoted to the numerical analysis and mainly deals with problems of geophysical fluids. We compare the simulations obtained with this compressible isentropic Navier–Stokes model and those obtained with a shallow water model (Di Martino et al. , 1999). At first, the computations are executed on a simplified domain in order to validate the method by comparison with existing numerical results and then on a real domain: the dam of Calacuccia (France). At last, we numerically implement an analytical example presented by Weigant (1995) which shows that even if the data are rather smooth, we cannot have bounds on ρ in Lp for p large if when N=2 .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.