Abstract

ABSTRACTUrban pollution can often impact surrounding, non-urban regions, through advection and dispersal of pollutants by the prevailing winds. Urban regions located upstream of high mountains, such as the Andes, can potentially impact the cryosphere by deposition of particles onto the surface of the snowpack and glaciers. Santiago, the capital of Chile, has more than 6 million inhabitants and regularly experiences episodes of severe pollution, particularly during the austral winter. Some studies have hypothesized that particle pollution from Santiago can reach the cryosphere downwind of the city, but the scarcity of measurements made high in the mountains prevents the validation of mesoscale models so the proof of actual impact remains elusive. A research project was designed to provide some insight into this question. The Pollution Impact on Snow in the Cordillera - Experiments and Simulations (PISCES) project was carried out in 2014 and includes both observational and modeling components. A five-week field campaign was conducted at the end of winter, at an elevated site in a mountain valley, 65 km to the southeast of the center of Santiago, to characterize some aspects of particulate pollution. During synoptic conditions that result in clear days at the site, the mesoscale mountain-valley circulation is effective in transporting pollutants upwards during the day, leading to diluted particle concentrations beyond the summits of the highest peaks. Cloudy days with reduced up-valley circulation do not show increased concentrations associated with transport. Back trajectories indicate that airmasses reaching the site during the field campaign are seldom influenced by pollution from Santiago.

Highlights

  • There is overwhelming evidence that the continuing recession of glaciers worldwide is linked to climate change associated with human activities

  • EBC and particle-bound polycyclic aromatic hydrocarbons (PPAH) are highly correlated, since they are both primarily emitted by fossil-fuel combustion

  • The observations indicate a significant difference in the diurnal cycle of condensation nuclei (CN) concentrations between cloudless and cloudy days, with a peak in concentrations only seen at the research site on cloudless days at about 18:00 LT

Read more

Summary

Introduction

There is overwhelming evidence that the continuing recession of glaciers worldwide is linked to climate change associated with human activities. During synoptic conditions that result in clear days at the site, the mesoscale mountain-valley circulation is effective in transporting pollutants upwards during the day, leading to diluted particle concentrations beyond the summits of the highest peaks.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.