Abstract

The radial orbit instability generally arises in anisotropic collisionless stellar systems with the dominance of radial motions over transverse ones. Using the simplest anisotropic generalization of polytrope models for spherical clusters as an example, we show that the instability growth rates become exponentially small as the isotropic limit is approached. Given the finite lifetime of real astronomical objects, these systems should be assumed to become stable at some finite radial anisotropy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.