Abstract

The long-term effects of a distant third-body on a massless satellite that is orbiting an oblate body are studied for a high order expansion of the third-body disturbing function. This high order may be required, for instance, for Earth artificial satellites in the so-called MEO region. After filtering analytically the short-period angles via averaging, the evolution of the orbital elements is efficiently integrated numerically with very long step-sizes. The necessity of retaining higher orders in the expansion of the third-body disturbing function becomes apparent when recovering the short-periodic effects required in the computation of reliable osculating elements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.