Abstract

The fundamental equations of the hydrodynamic theory of one-dimensional shock waves — that is, the equations of conservation of mass, of momentum, and of energy — are developed. These are used to calculate the velocity, massvelocity, temperature, and pressure rise in shock waves in air and in water. With one additional equation, they suffice to permit a calculation of detonation velocities in gaseous and in solid explosives. Predictions of detonation velocity as a function of loading density are thereby achieved, accurate to a few percent. Pressures, temperatures, and mass-velocities inside the explosive are also computed. The question of rarefaction waves following the detonation front in the explosive is investigated. The initial velocity, pressure, and so forth, of the shock wave produced at the end of a stick of explosive are calculated successfully. The dying away of shock waves, problems of reflection, and so forth, are also discussed briefly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.