Abstract
Tear resistance is of vital importance in the various functions of skin, especially protection from predatorial attack. Here, we mechanistically quantify the extreme tear resistance of skin and identify the underlying structural features, which lead to its sophisticated failure mechanisms. We explain why it is virtually impossible to propagate a tear in rabbit skin, chosen as a model material for the dermis of vertebrates. We express the deformation in terms of four mechanisms of collagen fibril activity in skin under tensile loading that virtually eliminate the possibility of tearing in pre-notched samples: fibril straightening, fibril reorientation towards the tensile direction, elastic stretching and interfibrillar sliding, all of which contribute to the redistribution of the stresses at the notch tip.
Highlights
Tear resistance is of vital importance in the various functions of skin, especially protection from predatorial attack
We attribute skin’s tear resistance to the nano/ micro-scale behaviour of the collagen fibrils using mechanical and structural characterization involving in situ tension loading with small-angle X-ray scattering (SAXS) and scanning electron microscopy (SEM), together with ultrahigh-resolution SEM and transmission electron microscopy (TEM)
The tear resistance is due to the synergistic activation of four principal deformation mechanisms, which we identify and quantify the straightening and stretching of collagen fibrils, reorientation of fibrils towards the force application direction, and the sliding of fibrils by the deformation and reformation of bonds between them
Summary
Tear resistance is of vital importance in the various functions of skin, especially protection from predatorial attack. We attribute skin’s tear resistance to the nano/ micro-scale behaviour of the collagen fibrils using mechanical and structural characterization involving in situ tension loading with small-angle X-ray scattering (SAXS) and scanning electron microscopy (SEM), together with ultrahigh-resolution SEM and transmission electron microscopy (TEM).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.