Abstract

How to model shadow fading by applying the inverse gamma (IGA) distribution has recently gained widespread attention in wireless transmissions. However, the sum of α-μ/IGA variates, and its applications under independent and/or correlated scenarios, have yet to be addressed in open research works. Hence, this paper provides a systematic investigation of the α-μ/IGA model. First, we derive the expressions of the fundamental statistics of the univariate and bivariate α-μ/IGA models including the probability density function, cumulative distribution function, and moment generating function, and propose a mixture α-μ model to approximate the α-μ/IGA model. Then, according to the above statistical expressions, the statistical properties of the sum of α-μ/IGA variates are obtained and employed in the maximal ratio combining receivers. Third, the novel exact and approximated expressions of some performance metrics of interest are also derived, for instance, the average bit/symbol error probability, the outage probability, the average channel capacity, and the effective rate. Moreover, to prove the asymptotic properties of the performance metrics at the high signal-to-noise regions, some examples are performed. Finally, we explore numerical analysis and simulations to demonstrate the accuracy of the theoretical expressions under the different channel and system parameters. These results provide some significant insights into the reliability design and deployment of some conventional and emerging wireless communication applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.