Abstract

We consider semi-infinite linear programs with countably many constraints indexed by the natural numbers. When the constraint space is the vector space of all real valued sequences, we show that the finite support (Haar) dual is equivalent to the algebraic Lagrangian dual of the linear program. This settles a question left open by Anderson and Nash (1987). This result implies that if there is a duality gap between the primal linear program and its finite support dual, then this duality gap cannot be closed by considering the larger space of dual variables that define the algebraic Lagrangian dual. However, if the constraint space corresponds to certain subspaces of all real-valued sequences, there may be a strictly positive duality gap with the finite support dual, but a zero duality gap with the algebraic Lagrangian dual.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.