Abstract

Ab initio calculations were realized to analyze the existence of intermolecular X···O interactions in bromochlorodifluoromethane (CF2ClBr) complexes with ozone, where X = F, Cl, and Br. These calculations have been carried out using MP2 and CCSD(T) methods, through analysis of surface electrostatic potentials V(r), intermolecular interaction energies, and electron density analysis. Coupled cluster (CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVTZ) calculations indicate that the stabilization energies for the CF2ClBr−O3complexes lie in the range between –3.9 and –7.7 kJ/mol. The characteristic of X···O interactions has been identified in terms of the electron density analysis within the quantum theory of atoms in molecules. Energy decomposition analysis shows that the attractive nature of the X···O interactions within the title complexes is chiefly due to dispersion effects, but electrostatic contribution also plays an important role.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.