Abstract
We show that the Stanley–Wilf limit for the class of 4231-avoiding permutations is at least by 9.47. This bound shows that this class has the largest such limit among all classes of permutations avoiding a single permutation of length 4 and refutes the conjecture that the Stanley–Wilf limit of a class of permutations avoiding a single permutation of length k cannot exceed ( k − 1 ) 2 . The result is established by constructing a sequence of finite automata that accept subclasses of the class of 4231-avoiding permutations and analysing their transition matrices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.