Abstract

Resistance switching properties of nanoscale junctions of spin crossover molecules have received recently much interest. In many cases, this property has been traced back to the variation of molecular orbital energies upon spin transition. However, one can also expect a substantial reorganization of the molecular structure due to charge localization, which calls for a better understanding of the relationship between the redox potential and the spin state of the molecule. To investigate this issue, we carried out a detailed density functional theory and variable temperature cyclic voltammetry investigation of the benchmark compound [Fe(HB(1,2,4-triazol-1-yl)3)2] in solution. We show that, for a correct thermodynamical picture, it is necessary to take into account the charge transfer-induced electronic and structural reorganization as well as spin equilibria in the oxidized and reduced species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.