Abstract

Rotary forging process, in spite of its various advantages, has still not reached industrial production scale owing to its complex nature. With the advent of sophisticated finite-element modelling capabilities, it is now possible to make rotary forging more predictable and optimize it for industrial production standards.However, modelling by nature involves a series of assumptions and simplifications that can help us make reasonable predictions. It is important to know the important factors that affect the results, and what compromises can be made, with a genuine understanding of what the compromises will result in. This paper reports some initial findings from our attempt towards robust modelling for the design of the rotary forging process. Herein, we have taken the simple case of rotary upsetting of cylinders using a custom-designed rotary forging machine and modelled it using commercial metal-forming software QForm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.