Abstract

In the present paper, we investigate a nonlocal boundary problem for the Laplace equation in a half-disk, with opposite flows at the part of the boundary. The difference of this problem is the impossibility of direct applying of the Fourier method (separation of variables). Because the corresponding spectral problem for the ordinary differential equation has the system of eigenfunctions not forming a basis. A special system of functions based on these eigenfunctions is constructed. This system has already formed the basis. This new basis is used for solving the nonlocal boundary value problem. The existence and the uniqueness of the classical solution of the problem are proved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.