Abstract
This work shows the voltage regulation of a DC–DC buck converter by applying sliding mode control using three different cases of sliding surfaces. The DC–DC buck converter is modeled by ordinary differential equations (ODEs) that are solved by applying numerical methods. The ODEs describe two state variables that are associated to the capacitor voltage and the inductor current. The state variable associated to voltage is regulated by applying two well-known sliding surfaces and a third one that is introduced herein to improve the response of the sliding mode control. The stability of the proposed sliding surface is verified by using a Lyapunov theorem to guarantee closed-loop stability. Finally, simulation results show the improvement of voltage regulation when applying the proposed sliding surface compared to already reported approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.