Abstract

Jerky flow in dilute alloys, or the Portevin–Le Chatelier effect, is investigated using statistical analysis of time series characterizing the evolution of the plastic activity at distinct scales of observation, namely, the macroscopic scale of stress serrations and a mesoscopic scale pertaining to the accompanying acoustic emission. Whereas the stress serrations display various types of statistical distributions depending on the driving strain rate, including power-law, peaked and bimodal histograms, it is found that acoustic emission is characterized by power-law statistics of event size in all experimental conditions. The latter reflect intermittency and self-organization of plastic activity at a mesoscopic scale. This shift in the observed dynamics when the observation length scale is decreased is discussed in terms of the synchronization of small-scale events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.