Abstract
The flavoprotein AppA from Rhodobacter sphaeroides contains an N-terminal, FAD-binding BLUF photoreceptor domain. Upon illumination, the AppA BLUF domain forms a signaling state that is characterized by red-shifted absorbance by 10nm, a state known as AppARED. We have applied ultrafast spectroscopy on the photoaccumulated AppARED state to investigate the photoreversible properties of the AppA BLUF domain. On light absorption by AppARED, the FAD singlet excited state FADRED∗ decays monoexponentially in 7ps to form the neutral semiquinone radical FADH•, which subsequently decays to the original AppARED molecular ground state in 60ps. Thus, FADRED∗ is deactivated rapidly via electron and proton transfer, probably from the conserved tyrosine Tyr-21 to FAD, followed by radical-pair recombination. We conclude that, in contrast to many other photoreceptors, the AppA BLUF domain is not photoreversible and does not enter alternative reaction pathways upon absorption of a second photon. To explain these properties, we propose that a molecular configuration is formed upon excitation of AppARED that corresponds to a forward reaction intermediate previously identified for the dark-state BLUF photoreaction. Upon excitation of AppARED, the BLUF domain therefore enters its forward reaction coordinate, readily re-forming the AppARED ground state and suppressing reverse or side reactions. The monoexponential decay of FAD* indicates that the FAD-binding pocket in AppARED is significantly more rigid than in dark-state AppA. Steady-state fluorescence experiments on wild-type, W104F, and W64F mutant BLUF domains show tryptophan fluorescence maxima that correspond with a buried conformation of Trp-104 in dark and light states. We conclude that Trp-104 does not become exposed to solvent during the BLUF photocycle.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.