Abstract

Collider, direct and indirect searches for dark matter have typically little or no sensitivity to weakly interacting massive particles (WIMPs) with masses above a few TeV. This rather unexplored regime can however be probed through the search for distinctive gamma-ray spectral features produced by the annihilation of WIMPs at very high energies. Here we present a dedicated search for gamma-ray boxes—sharp spectral features that cannot be mimicked by astrophysical sources—with the upcoming Cherenkov Telescope Array (CTA). Using realistic projections for the instrument performance and detailed background modelling, a profile likelihood analysis is implemented to derive the expected upper limits and sensitivity reach after 100 h of observations towards a 2°×2° region around the Galactic centre. Our results show that CTA will be able to probe gamma-ray boxes down to annihilation cross sections of 10−27−10−26 cm3/s up to tens of TeV. We also identify a number of concrete particle physics models providing thermal dark matter candidates that can be used as target benchmarks in future search campaigns. This constitutes a golden opportunity for CTA to either discover or rule out multi-TeV thermal dark matter in a corner of parameter space where all other experimental efforts are basically insensitive.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.