Abstract

One of the main challenges in security today is defending against malware attacks. As trends and anecdotal evidence show, preventing these attacks, regardless of their indiscriminate or targeted nature, has proven difficult: intrusions happen and devices get compromised, even at security-conscious organizations. As a consequence, an alternative line of work has focused on detecting and disrupting the individual steps that follow an initial compromise and are essential for the successful progression of the attack. In particular, several approaches and techniques have been proposed to identify the command and control (C8C) channel that a compromised system establishes to communicate with its controller. A major oversight of many of these detection techniques is the design’s resilience to evasion attempts by the well-motivated attacker. C8C detection techniques make widespread use of a machine learning (ML) component. Therefore, to analyze the evasion resilience of these detection techniques, we first systematize works in the field of C8C detection and then, using existing models from the literature, go on to systematize attacks against the ML components used in these approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.