Abstract

We analyze the role of slab pull acting on the Pacific plate during its early Tertiary change in motion. Slab pull forces are estimated by integrating the negative buoyancy of a 700 km long slab along a revised subduction boundary model adopting the Müller et al. (2008) seafloor age reconstructions. Our results indicate that torques predicted from a simple slab pull model match the Pacific plate Euler vectors during the Tertiary fairly well. The change of the Pacific motion at ∼50–40 Ma appears to be driven by the onset of the Izu‐Bonin‐Mariana system and, soon afterwards, by the Tonga‐Kermadec subduction zones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.