Abstract

The potential application of anatase titanium dioxide (TiO2) nanoparticles for solar fuel generation has been recently attracting many attentions due to its excellent chemical stability. Nevertheless, the fast charge recombination during photoexcitation process may often reduce the photocatalytic activity. This work presents the role of plasmonic Au nanoparticles on enhancing the photocatalytic activity of TiO2 nanoparticles for a visible-light-driven conversion of bicarbonate to formate. Here, two types of nano-sized Au and TiO2 heterostructures, i.e., Au-TiO2 Janus nanostructures and core-shell Au@TiO2 nanostructures were successfully prepared and characterized using UV-Vis and HR-TEM. Results demonstrated that Au-TiO2 Janus nanostructures had a superior photocatalytic activity compared to TiO2 nanoparticles and core-shell Au@TiO2 nanostructures. This photocatalytic enhancement is believed due to the presence of surface plasmon resonance (SPR) phenomenon in Au nanoparticles that provides a Fermi energy level, which could prevent the charge recombination process during photoexcitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.