Abstract
Underpotential deposition (UPD) of Cu on Au(111) electrodes modified by self-assembled monolayers (SAMs) of ω-(4‘-methylbiphenyl-4-yl)ethanethiol (BP2) was studied in situ by electrochemical scanning tunneling microscopy. The UPD layer intercalated between SAM and Au consists of monatomic high nanoislands on top of an extended Cu film. Nucleation and growth of the Cu UPD layer are accounted for by a mechanism that is fundamentally different from the one suggested in the literature for alkanethiols. Domain boundaries, vacancy islands, or step edges do not act as nucleation sites. The electrode passivation is therefore not limited by the intrinsic structure of the SAM but by extrinsic defects, which are associated with more substantial discontinuities in the SAM. These act not only as nucleation centers for the Cu UPD but throughout the whole growth process are the only sites through which Cu penetrates. The growth proceeds by diffusion of Cu at the SAM−substrate interface until completion of the UPD layer. The implications of our observations for the generation of metal-SAM-metal structures are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.