Abstract

Let F be a free Lie algebra of rank> 1 and S be an ideal of F. Denote by Fm and Fn l,…,nk the terms of the lower central and the polycentral series of F. The aim of this paper is to provide a sufficient condition for the quotient algebra Fn l,…,nk/Sn l,…,nk to be infinitely generated. The case Fm/Sm was studied in [6] for free groups and in [ 2 ] for free Lie algebras. In this paper the following main theorem is proved : If F = F2 = S, k > 1 and ni > 1 for i=l,…, k, then Fn l…,nk/Sn l is infinitely generated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.