Abstract

There is currently a great deal of interest in proteins that fold in a single highly cooperative step. Particular attention has been focused on elucidating the factors that govern folding rates of simple proteins. Recently, the topology of the native state has been proposed to be the most important determinant of their folding rates. Here we report a comparative study of the folding of three topologically equivalent proteins that adapt a particularly simple α/β fold. The folding kinetics of the N-terminal domain of RNase HI and the N-terminal domain of the ribosomal protein L9 from Escherichia coli (eNTL9) were compared to the previously characterized N-terminal domain of L9 from Bacillus stearothermophilus (bNTL9). This 6.2kDa protein, which is one of simplest examples of the ABCαD motif, folds via a two-state mechanism on the millisecond to submillisecond time scale. The RNase HI domain and bNTL9 have very similar tertiary structures but there is little similarity in primary sequence. bNTL9 and eNTL9 share the same biological function and a similar primary sequence but differ significantly in stability. Fluorescence-detected stopped-flow experiments showed that the three proteins fold in a two-state fashion. The folding rates in the absence of denaturant were found to be very different, ranging form 21s−1 to 790s−1 at 10°C. The diverse folding rates appear to reflect large differences in the stability of the proteins. When compared at an isostability point, the folding rates converged to a similar value and there is a strong linear correlation between the log of the folding rate and stability for this set of proteins. These observations are consistent with the idea that stability can play an important role in dictating relative folding rates among topologically equivalent proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.