Abstract
ABSTRACTWhen statistical models are employed to provide a parsimonious description of empirical relationships, the extent to which strong conclusions can be drawn rests on quantifying the uncertainty in parameter estimates. In multiple linear regression (MLR), regression weights carry two kinds of uncertainty represented by confidence sets (CSs) and exchangeable weights (EWs). Confidence sets quantify uncertainty in estimation whereas the set of EWs quantify uncertainty in the substantive interpretation of regression weights. As CSs and EWs share certain commonalities, we clarify the relationship between these two kinds of uncertainty about regression weights. We introduce a general framework describing how CSs and the set of EWs for regression weights are estimated from the likelihood-based and Wald-type approach, and establish the analytical relationship between CSs and sets of EWs. With empirical examples on posttraumatic growth of caregivers (Cadell et al., 2014; Schneider, Steele, Cadell & Hemsworth, 2011) and on graduate grade point average (Kuncel, Hezlett & Ones, 2001), we illustrate the usefulness of CSs and EWs for drawing strong scientific conclusions. We discuss the importance of considering both CSs and EWs as part of the scientific process, and provide an Online Appendix with R code for estimating Wald-type CSs and EWs for k regression weights.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.