Abstract
Let be a linear, closed, and densely defined unbounded operator, where X and Y are Hilbert spaces. Assume that A is not boundedly invertible. Suppose the equation Au=f is solvable, and instead of knowing exactly f only know its approximation satisfies the condition: In this paper, we are interested a regularization method to solve the approximation solution of this equation. This approximation is a unique global minimizer of the functional , for any , defined as follows: . We also study the stability of this method when the regularization parameter is selected a priori and a posteriori. At the same time, we give an application of this method to the weak derivative operator equation in Hilbert space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.