Abstract

The main objective of this paper is to study the boundedness character, the periodicity character, the convergence and the global stability of positive solutions of the difference equation $$ x_{n+1}=\frac {\alpha _0x_n+\alpha _1x_{n-l}+\alpha _2x_{n-k}} {\beta _0x_n+\beta _1x_{n-l}+\beta _2x_{n-k}}, \quad n=0,1,2,\dots $$ where the coefficients $\alpha _i,\beta _i\in (0,\infty )$ for $ i=0,1,2,$ and $l$, $k$ are positive integers. The initial conditions $ x_{-k}, \dots , x_{-l}, \dots , x_{-1}, x_0 $ are arbitrary positive real numbers such that $l<k$. Some numerical experiments are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.