Abstract

Most particle detectors are based on the hypothesis that particles are emitted randomly upon nuclear decay. In the present work, we tested the hypothesis of the existence of correlation in the random trajectories of alpha particles emitted from {}^{241}Am source and the null hypothesis of random trajectories. The trajectories were clued through the registration of track in a solid-state nuclear track detector. The experimental parameters were optimized to identify the possible sources of correlation in the track registration and the detector conditions upon exposure and etching to avoid misleading results. The optimization included authentication of linearity in registration efficiency with exposure time to prevent coalescence of registered tracks. The statistical inference processes were based upon adaptive quadrates analysis of the spatial data, and entropy and divergence analysis of the quadrate data together with the null hypothesis of Poisson distribution of random trajectories. The clustering and dispersion analysis were performed with central deviation tendency, empirical K-function, radial distribution analysis, and proximity Analysis. Results showed a pattern of gained information within the registered tracks that may be attributed to the alteration in the alpha particles’ trajectories induced by the strong electric field due to atoms in the source compound and encapsulation film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.