Abstract

We consider a class of local homeomorphisms more general than the mappings with bounded distortion. Under these homeomorphisms, the growth of the p-module (n−1 < p ≤ n) of the families of curves is controlled by an integral containing an admissible metric and a measurable function Q. It is shown that, under generic conditions imposed on the majorant Q, this class has a positive radius of injectivity (and, hence, a ball in which every mapping is homeomorphic). Moreover, one of the conditions imposed on Q is not only sufficient but also necessary for existence of a radius of injectivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.