Abstract

The relative influence of thermal and quantum fluctuations on the proton transfer properties of the charged water complexes H5O2+ and H3O2- was investigated with the use of ab initio techniques. These small systems can be considered as prototypical representatives of strong and intermediate-strength hydrogen bonds. The shared proton in the strongly hydrogen bonded H5O2+ behaved in an essentially classical manner, whereas in the H3O2- low-barrier hydrogen bond, quantum zero-point motion played a crucial role even at room temperature. This behavior can be traced back to a small difference in the oxygen-oxygen separation and hence to the strength of the hydrogen bond.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.