Abstract
We investigate the Schrödinger equation in the framework of bicomplex numbers, which are pairs of complex numbers making up a commutative ring with zero-divisors. We propose an analytical method to solve bicomplex-version of Schrödinger equation corresponding to the systems of Hamiltonians of both hermitian (self-adjoint) and non-hermitian PT symmetric type. In our approach we extend the existing mathematical formulation of quantum system searching for the exact or quasi-exact solution for ground state energy eigenvalues and associated wave functions acting in bicomplex Hilbert space. The model concerning hermitian Hamiltonians is then applied to the problems of two bicomplex valued polynomial oscillators one involving x2 and another of isotonic type. The ground states and associated energy values for both the oscillators are found to be hyperbolic in nature. The model in connection to the unbroken PT symmetric Hamiltonians is then applied to illustrate the problems of complex and bicomplex valued shifted oscillators.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.