Abstract
A major problem encountered in trying to model the current system associated with a polar magnetic substorm from ground‐based magnetic observations is the difficulty of adequately evaluating the earth's induction effects. Two methods for simulating these effects are reviewed here. Method 1 simply reduces the earth to a perfect conductor and leads to very simple field equations. Method 2 considers the earth as a ‘horizontally’ layered body of finite conductivity but requires a large amount of computational time. The performances of both methods are compared when the substorm current system can be approximated by an infinitely long electrojet flowing over a flat earth. In this case it appears that for most substorm modeling problems it is sufficient to treat the earth as a perfect conductor. The depth of this perfect conductor below the earth's surface should be selected in function of the source frequency content.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.