Abstract

In this paper, we present a new notion of stability for nonlinear systems of differential equations called practical h-stability. Necessary and sufficient conditions for practical h-stability are given using the Lyapunov theory. Our original results generalize well-known fundamental results: practical exponential stability, practical asymptotic stability, and practical stability for nonlinear time-varying systems. In addition, these results are used to study the practical h-stability of two important classes of nonlinear systems, namely perturbed and cascaded systems. The last part is devoted to the study of the problem of practical h-stabilization for certain classes of nonlinear systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.