Abstract

Model calculations of circumsolar dust are conducted taking into account the increased ion drag due to the interaction of F-coronal dust with CMEs inside 8 R s. The choice of 8 R s is not arbitrary, after considering the severe plasma environment inside this region. Dust particles are allowed to spiral inward towards the Sun via the Poynting-Robertson drag, and the characteristics of the CMEs are applied in order to numerically compute the increased ion drag on F-coronal dust. The results show that the spiraling time would roughly be cut in half for dust particles inside 8 R s. Differences in the spiraling time due to the dependence of the magnitude of increased ion drag on dust particle size, creates separation in the heliocentric distance of the orbits of small (> 10 μm) vs. larger particles. This result could create conditions where a dust ring or rings may appear as a transient feature, which would explain former citing of such dust rings by observers and their absence by others.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.