Abstract

Dopp has demonstrated an antheridium-inducing hormone (antheridiogen) in P.aquilinum. This antheridiogen (abbr. Apt.) is active in many, if not all, species of the family Polypodiaceae. Among responsive species, the minimally effective concentration varies widely. Apt was assayed againstOnoclea sensibilis because this species fails to form antheridia spontaneously under the prevailing conditions of culture and because none of the many species tested responds to a lower concentration APt is inactive toward the investigated species of the fern families Osmundaceae, Cyatheaceae and Schizaeaceae. The two schizaeaceous speciesAnema phyllitidis andLygodium japonicum also elaborate antheridiogens (abbr. AAn and ALy). Both these antheridiogens are inactive in 0.sensibilis, the species used to assay for APt. AAn, ALy, APt and AOn (the antheridiogen of O.sensibilis) are distinct entities based both on the criteria of cross-testing and of Chromatographic separation. Cross-testing led to the conclusion that the antheridiogen ofCeratopteris thalictroides differ from APt and AAn. Gibberellins have antheridiogenic properties in schizaeaceous species but, like AAn and ALy, they fail to hasten antheridium formation in the species used to assay for APt. The native antheridiogens of schizaeaceous species are more species-selective in their action than is GA3. AAn has recently been isolated. Its structure is similar to, if not identical with, that of gibberellins. AAn behaves like a weak gibberellin in several higher plant assay systems. The prothalli ofP. aquilinum andO. sensibilis become insensitive to Apt as they attain heart shape or shortly thereafter. Prothalli ofP. aquilinum do not begin to synthesize APt and secrete it into the medium, until after they have become insensitive to it. It is in consequence of this that the most rapidly growing and developing individuals attain the archegonial phase without a prior antheridial phase. Various mechanisms and developmental characteristics are described, which strongly favor cross-fertilization inP. aquilinum without, however, eliminating an opportunity for self-fertilization. The cells of abortive antheridium initials, and of “green antheridia”, exhibit certain characteristics of green vegetative cells. These atypical structures appear to arise when early antheridial stages are overtaken by conditions unfavorable to antheridium differentiation. The observations suggest that APt may be required beyond an initial inductive event. The investigations led to the conclusion that APt functions by cancelling a light-dependent block to antheridium formation and suggest that in darkness this block decays without the intervention of APt. InPolypodium crassifolium, the light-effect on antheridium formation is mediated by phytochrome. Other subject matters discussed include: The cellular location of antheridium initials; the relationship of antheridiogen to antheridiogen structure; the existence of a switching mechanism in the sexual development ofO. sensibilis; the retrieval of genetic information in the induction and differentiation of antheridia; the tempero-spatial pattern of competence to antheridiogen in schizaeaceous species and the inducibility of a physiological state antagonistic to antheridium formation in A.phyllitidis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.