Abstract

The physical motivation and interpretation of the stochastic propagation channel model of Saleh and Valenzuela are discussed in detail. This motivation mainly relies on assumptions on the stochastic properties of the positions of transmitter, receiver and scatterers in the propagation environment, and on the frequency range that is covered by the model. Some of these assumptions break down when the application of the model is extended from wideband to ultra-wideband propagation channels. Another important difference between these application contexts is the spatial scale over which the stochastic properties of the channel fluctuate when the transmitter or receiver is moved. This is further illustrated by analyzing the average power delay profile and some other channel properties for different levels of ensemble averaging, and discussing the relation between the ensemble averaging levels and the spatial variation scales. The notion of the averaging levels is essential for correct interpretation of the model, and hence for appropriate channel characterization and system design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.