Abstract

State Machine Replication (SMR) and blockchains share the same goal of keeping a consistent state replicated across a set of replicas. However, there are some subtle differences between these techniques. In particular, using a SMR framework as a building block to implement blockchains significantly impacts performance due to the sequential execution model of traditional SMRs, i.e., all transactions are sequentially executed. This work presents a case study about the use of a parallel SMR (PSMR) to implement blockchains. In a PSMR, some transactions can be executed in parallel, for instance those addressed to different accounts. More specifically, we implemented a payment system and conducted a set of experiments to show that, by using a PSMR, it is possible to circumvent the previously described performance limitation, i.e., the performance of the resulting system increases substantially, i.e., up to 22×, when compared to a traditional sequential SMR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.