Abstract
This paper presents an alternative and efficient method for solving the optimal control of single‐stage hybrid manufacturing systems which are composed with two different categories: continuous dynamics and discrete dynamics. Three different inertia weights, a constant inertia weight (CIW), time‐varying inertia weight (TVIW), and global‐local best inertia weight (GLbestIW), are considered with the particle swarm optimization (PSO) algorithm to analyze the impact of inertia weight on the performance of PSO algorithm. The PSO algorithm is simulated individually with the three inertia weights separately to compute the optimal control of the single‐stage hybrid manufacturing system, and it is observed that the PSO with the proposed inertia weight yields better result in terms of both optimal solution and faster convergence. Added to this, the optimal control problem is also solved through real coded genetic algorithm (RCGA) and the results are compared with the PSO algorithms. A typical numerical example is also included in this paper to illustrate the efficacy and betterment of the proposed algorithm. Several statistical analyses are carried out from which can be concluded that the proposed method is superior to all the other methods considered in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.