Abstract
In this paper we describe a multiple-access protocol in which different users are assumed to share the same bandwidth and the same pulse. Users employ the same modulation (binary-phase shift keying, quadrature-phase shift keying, and rectangular-phase shift keying are considered) with different transmitted magnitude, and are discriminated on the basis of the corresponding magnitude at receiver location. Conditions for user discrimination are analyzed. The proposed receiver uses successive decoding in order to avoid exponential complexity of maximum-likelihood decoding. Such a scheme, compared to orthogonal multiaccess schemes (e.g. time- or frequency-division multiple access) allows to achieve larger normalized throughput for systems operating in large signal-to-noise ratio range, and may be jointly applied with classical protocols in personal-area networks. Analytical and numerical results, in terms of bit error rate and normalized throughput, are derived for performance evaluation on additive white Gaussian noise channels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.