Abstract
We study the partial regularity of a 3D model of the incompressible Navier-Stokes equations which was recently introduced by the authors in [11]. This model is derived for axisymmetric flows with swirl using a set of new variables. It preserves almost all the properties of the full 3D Euler or Navier-Stokes equations except for the convection term which is neglected in the model. If we add the convection term back to our model, we would recover the full Navier-Stokes equations. In [11], we presented numerical evidence which seems to support that the 3D model develops finite time singularities while the corresponding solution of the 3D Navier-Stokes equations remains smooth. This suggests that the convection term play an essential role in stabilizing the nonlinear vortex stretching term. In this paper, we prove that for any suitable weak solution of the 3D model in an open set in space-time, the one-dimensional Hausdorff measure of the associated singular set is zero. The partial regularity result of this paper is an analogue of the Caffarelli-Kohn-Nirenberg theory for the 3D Navier-Stokes equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.