Abstract

Multiscaling appears in some non-equilibrium systems when different moments of a bulk averaged state variable scale with different and nontrivial exponents. This multiexponent scaling behaviour is highly nontrivial and is associated with different fractal properties at different observation scales. It is unclear what kind of generic mechanisms could make multiscaling to emerge in continuous hydrodynamic descriptions of dynamical systems with only local interactions, governed by partial-differential equations, in the continuum. Here we present an extensive numerical study of a continuous model of epitaxial thin-film growth, which main characteristic is that it includes infinitely many nonlinearities. For strong enough nonlinearity, the model shows effective multiscaling over a range of time/length scales, while normal monoscaling is actually recovered at long wavelengths. We conjecture that the existence of infinitely many weakly relevant nonlinear terms may lead to this nontrivial scaling behaviour in a generic way.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.