Abstract

The oxygen evolution reaction (OER) plays a crucial role in (photo)electrochemical devices that use renewable energy to produce synthetic fuels. Recent measurements on semiconducting oxides have found a power law dependence of the OER rate on surface hole density, suggesting a multihole mechanism. In this study, using transient photocurrent measurements, density functional theory simulations and microkinetic modelling, we have uncovered the origin of this behaviour in haematite. We show here that the OER rate has a third-order dependence on the surface hole density. We propose a mechanism wherein the reaction proceeds by accumulating oxidizing equivalents through a sequence of one-electron oxidations of surface hydroxy groups. The key O–O bond formation step occurs by the dissociative chemisorption of a hydroxide ion involving three oxyl sites. At variance with the case of metallic oxides, the activation energy of this step is weakly dependent on the surface hole coverage, leading to the observed power law.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.