Abstract

Recent experiments suggest that vibrational strong coupling (VSC) may significantly modify ground-state chemical reactions and their rates even without external pumping. The intrinsic mechanism of this "vacuum-field catalysis" remains largely unclear. Generally, modifications of thermal reactions in the ground electronic states can be caused by equilibrium or non-equilibrium effects. The former are associated with modifications of the reactant equilibrium distribution as expressed by the transition state theory of chemical reaction rates, while the latter stem from the dynamics of reaching and leaving transition state configurations. Here, we examine how VSC can affect chemical reactions rates in a cavity environment according to transition state theory. Our approach is to examine the effect of coupling to cavity mode(s) on the potential of mean force (PMF) associated with the reaction coordinate. Within the context of classical nuclei and classical photons and also assuming no charge overlap between molecules, we find that while the PMF can be affected by the cavity environment, this effect is negligible for the usual micron-length cavities used to examine VSC situations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.