Abstract

The assessment of the influence of the work-hardening of material on the optimum die profile and drawing force in rod drawing process is the main objective of the present paper. The upper bound solution, based on the assumption of perfect plasticity, has been extended to consider the work-hardening of the material during the rod drawing process through curved dies. Analytical results of drawing forces for rod drawing process through four different types of streamlined die profiles are compared with the finite element simulation data using the finite element code, DEFORM 2D. It is shown that as the work-hardening exponent increases, the optimum die length increases, the required drawing force decreases and maximum possible reduction in area increases. Based on this proposed modeling technique, drawing process of real materials through various curved dies can be optimized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.