Abstract

Spectral compression of the geometry of triangle meshes achieves good results in practice, but there has been little or no theoretical support for the optimality of this compression. We show that, for certain classes of geometric mesh models, spectral decomposition using the eigenvectors of the symmetric Laplacian of the connectivity graph is equivalent to principal component analysis on that class, when equipped with a natural probability distribution. Our proof treats connected one-and two-dimensional meshes with fixed convex boundaries, and is based on an asymptotic approximation of the probability distribution in the two-dimensional case. The key component of the proof is that the Laplacian is identical, up to a constant factor, to the inverse covariance matrix of the distribution of valid mesh geometries. Hence, spectral compression is optimal, in the mean square error sense, for these classes of meshes under some natural assumptions on their distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.