Abstract

The scenario explaining the origin of the anomalous component of cosmic rays (ACR) implies a close relation between these high energy particles and the solar wind termination shock representing their main acceleration region. Consequently, one should expect the ACR distributions in the heliosphere to reflect some information about the structure as well as the large-scale geometry of the shock. We study the influence of a non-spherically symmetric heliospheric shock on the off-ecliptic -i.e. high latitude -ACR distributions using a two-dimensional model including their anisotropic diffusion and drift in the heliospheric magnetic field as well as a solar wind flow dependent on the heliographic latitude. The model calculations are used to investigate the probability of a possible polar elongation of the heliospheric shock from observations of the distributions of the ACR at high latitudes during solar minimum conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.