Abstract

<abstract><p>We study the finite difference approximation for axisymmetric solutions of a parabolic system with blow-up. A scheme with adaptive temporal increments is commonly used to compute an approximate blow-up time. There are, however, some limitations to reproduce the blow-up behaviors for such schemes. We thus use an algorithm, in which uniform temporal grids are used, for the computation of the blow-up time and blow-up behaviors. In addition to the convergence of the numerical blow-up time, we also study various blow-up behaviors numerically, including the blow-up set, blow-up rate and blow-up in $ L^\sigma $-norm. Moreover, the relation between blow-up of the exact solution and that of the numerical solution is also analyzed and discussed.</p></abstract>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.