Abstract

Rotation symmetric Boolean functions (RSBFs) have been used as components of different cryptosystems. This class of functions are invariant under circular translation of indices. In this paper, we investigated balanced RSBFs and 1st order correlation immune RSBFs. Based on constructive techniques, we give an accurate enumeration formula for n-variable balanced RSBFs when n is a power of a prime. Furthermore, an original and efficient method to enumerate all n-variable (n prime) 1st order correlation-immune functions is presented. The exact number of 1st order correlation immune RSBFs with 11 variables is 6925047156550478825225250374129764511077684773805520800 and the number of 13 variables has 189 digits. Then for more variables, we also provide a significant lower bound on the number of 1st order correlation immune RSBFs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.